
39

BigBus: A Scalable Optical Interconnect

Janibul Bashir, Eldhose Peter and Smruti R. Sarangi, Indian Institute of Technology Delhi

Abstract
This paper presents BigBus, a novel design of an on-chip photonic network for a 1024-
node system. For such a large on-chip network, performance and power reduction are
two mutually conflicting goals. This paper uses a combination of strategies to reduce
static power consumption while simultaneously improving both performance as well
as the energy-delay2 product. The crux of the paper is to segment the entire system
into smaller clusters of nodes, and adopt a hybrid strategy for each segment that in-
cludes conventional laser modulation, as well as a novel technique for sharing power
across nodes dynamically. We represent energy internally as tokens, where one token
will allow a node to send a message to any other node in its cluster. We allow optical
stations to arbitrate for tokens at a global level, and then we predict the number of
token equivalents of power that the off-chip laser needs to generate. Using these tech-
niques BigBus outperforms other competing proposals. We demonstrate a speedup of
14-34% over state of the art proposals and a 20-61% reduction in ED2.

1. INTRODUCTION
A thousand node (core + cache bank) multicore chip might not purely be in the domain
of mere speculation in the future. Even with the impending death of Moore’s law, we
would like to opine that creating a 1000-node system, where a node can be a computing
or a memory element, is a worthy goal to pursue.

The two major constraints in such networks are: area and power and. We believe that
even with current technology, area and power are not very significant impediments.
For example, the Xeon Phi 7290 has 72 4-way SMT cores (288 threads) fabricated in
a 14nm process. The number of cores is expected to increase in future versions such
as Knight’s Mill and Knight’s Hill. Recently UC Davis released a low power 1000-core
research processor [Davis 2016], and many more efforts are there in this direction
such as the EU funded PRIME project [EPSRC 2013]. All the efforts in this direction
advocate the lean core approach [Kurian et al. 2010; Abellán et al. 2016], where each
core is a single or dual issue in-order processor.

We try to size a similar system, with 768 cores, and 256 cache banks. If each core
is similar to a dual-issue inorder ARM A7 core, then we can fit 768 such cores in a
130mm2 die (duly scaled to the 10 nm process using the widely used scaling rules
proposed by Huang et al. [Stan et al. 2011]). In addition, we can fit 64 MB of SRAM
memory (170mm2) (computed using Cacti 5.3 [Thoziyoor et al. 2008]). The remaining
area can be used for PLLs, power supplies, and the interconnect. After due scaling, the
maximum power usage of 768 ARM A7 cores (at a 10 nm process) is within 120W. In

Author’s addresses:Janibul Bashir, Eldhose Peter and Smruti R. Sarangi, Computer Science Department,
Department of Computer Science and Engineering, IIT Delhi, Hauz Khas, New Delhi -110016. E-mails:
{janibbashir,eldhose,srsarangi}@cse.iitd.ac.in
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2010 ACM. 1550-4832/2010/03-ART39 $15.00
DOI: 0000001.0000001

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:2 Bashir et al.

comparison, Xeon Phi 7290 has a maximum TDP (thermal design power) of 245W. Our
experiments indicate that the average power consumption figures of our simulated
cores are much lower.

A mere agglomeration of low power cores, and cache banks does not yield a high
performing system, unless it is supplemented with a high performance interconnect.
We propose one such interconnect in this paper called BigBus, which is a high per-
formance optical interconnect. It is based on a 3D integration technique where the
different layers are stacked on top of each other. Our design is a two-layer 3D chip,
where an optical layer (waveguides + optical stations) is stacked on top of a CMOS
based logical layer (cores+cache banks). The different layers are connected together
using a popular through-silicon via (TSV) 3D integration technique [Topol et al. 2006;
Gu and Xu 2009]. It is one of the most promising techniques adopted in 3D chips as it
results in shorter interconnection length resulting in high performing interconnect [Ye
et al. 2009; Ye et al. 2013; Pasricha and Bahirat 2011].

Our reasons for choosing photonics based technology are because of its inherent
advantages in terms of latency, bandwidth, and possibly power efficiency if designed
well (duly justified in Section 5). We need such interconnects for such large systems
of cores and caches. Furthermore, photonics technology has already come down to the
board level (optical PCI-Express [Rath 2013]), and is expected to come inside the chip
very soon.

Sadly, creating an optical network for a 1000-node system is not easy. We know of
two similar efforts (ATAC [Kurian et al. 2010] and Electro-Photonic NoC for Kilocore
Systems [Abellán et al. 2016]), which we shall show to be extremely profligate in terms
of power consumption. Specifically, static power consumption has been shown [Demir
and Hardavellas 2014; Zhou and Kodi 2013; Peter et al. 2015; Bashir and Sarangi
2017] to be one of the single largest bottlenecks in the creation of scalable optical
networks. There are some standard techniques to reduce power consumption without
a significant drop in performance such as wavelength sharing [Zulfiqar et al. 2013]
and laser modulation [Peter et al. 2015]. Almost all power saving schemes in optical
networks use some combination of these basic approaches. However, like a good recipe,
which uses simple ingredients yet an elaborate process, here also the main task is
in designing a non-trivial network that has favorable properties. Our results show
that any trivial combination of these ideas does not lead to good solutions, and it is
necessary to first perform a thorough study of target workloads, and then arrive at a
design that is able to deliver high performance and extreme power savings.

The main contributions of this paper are summarized as follows:

— The intelligent placement of cores and cache banks, which reduces the number
of hops for most of the messages to two. Our placement scheme is counter-
intuitive; however it turns out to be the best solution for a system with
an optical NoC. We challenge the traditional way of thinking, and show that our
solution is superior.

— A novel partial-MWMR scheme where the data waveguides are partially shared be-
tween the optical stations. Previous proposals were either assigning a waveguide to
a particular optical stations or allowing all the stations to share the waveguide.

— An hierarchical optical NoC that can extend to 1000 node system without facing
much power loss.

— An effective NUCA protocol for such a large system.
— A novel predictive technique for laser modulation. It uses the current network statis-

tics like pending events and waiting time.

We motivate our technique in Section 3 by analyzing the behavior of some Parsec
benchmarks. We observe that unless some spatial locality is created, we will have too

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:3

many messages being sent all over the chip. After creating spatial locality, we note the
variance in the optical power requirement of different transmitters, and try to intelli-
gently size sub-networks to take the variance in traffic into account. We build on these
insights in Section 4.1, and show our results in Section 5, where we demonstrate that
our approach is superior to competing approaches by 14-34% in terms of performance
and 20-61% in terms of ED2.

2. BACKGROUND AND RELATED WORK
2.1. Optical Communication Infrastructure

Photodetector

Driver Receiver

Modulator
Laser
Source

Power Waveguide

Data Waveguide

Splitt
er

Fig. 1: Optical communication

The basic elements of an on-chip optical communication system are a laser source,
driver, modulator, waveguide, detector, and receiver (see Figure 1). The laser source
produces the optical signal. Each transmitter has a driver that controls a modulator,
which modulates the optical signal to encode the data. The modulated optical signal
passes through a waveguide (optical channel) to reach the destination. At the desti-
nation node, a photo-detector detects the optical transmission and performs an O/E
conversion. There are different types of optical buses. In an MWSR [Vantrease et al.
2008] waveguide, multiple nodes can write to a single waveguide and a single desti-
nation reads from that waveguide. A token channel [Vantrease et al. 2008] or a token
slot [Vantrease et al. 2009] approach can be used to implement the arbitration at the
sender side. The SWMR [Pan et al. 2009] waveguide has a single sender and mul-
tiple receivers. The MWMR [Pan et al. 2010] waveguide is a combination of SWMR
and MWSR, where multiple nodes can write to a single waveguide and multiple nodes
can read from the same waveguide. Whenever there are multiple senders, we need an
arbitration mechanism [Vantrease et al. 2009] to grant exclusive access, and when-
ever there are multiple receivers we need beam splitters [Peter and Sarangi 2014]
to divert a portion of the optical power to the receivers. Also note that in an SWMR
waveguide [Pan et al. 2009] receivers by default are mostly turned off. Before sending
a message, the standard approach is to turn on the receiver by sending a single bit,
and then transmit the message. This approach significantly reduces both static as well
as dynamic power (known as reservation assisted SWMR, see [Pan et al. 2009]).
Lasers: We propose to use directly modulated lasers (DML) in this work. They are
commercially available and it is possible to modulate these lasers in a single cycle
(@2.0 GHz) [FAUGERON et al. 2013] without facing issues related to thermal in-
stability [Peter et al. 2015]. In our work, we consider 4 arrays of DML lasers. Each
array consists of 32 DML lasers (max. optical power per array: 5.75W [FAUGERON
et al. 2013]) that can be separately modulated. Thus, we have 4 fast single cycle lasers
with 32 power levels each (also used by Peter et al. [Peter et al. 2015]). We distribute
power from lasers to individual optical stations (transceivers) using a special waveg-
uide called a power waveguide. As observed by Morris et al. [Morris et al. 2014] using

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:4 Bashir et al.

multiple off-chip laser sources has some benefits. Optical power can enter the chip at
multiple places. This reduces the power losses and the routing complexity of the power
waveguide. Also, there are limits to the power a single waveguide can carry due to
non-linear effects in light transmission. Having more power waveguides circumvents
this limit.
Data Network: The traditional approach of using a single serpentine shaped waveg-
uide [Vantrease et al. 2008; Chittamuru et al. 2017] passing through all the stations
is not feasible because of a large number of optical stations. The power losses will be
prohibitive. In comparison, a mesh based network [Zhou and Kodi 2013] with either
electrical routers, or wavelength based routing [Kirman and Martı́nez 2010] will also
become very complex because of the difficulty in quickly setting up and tearing down
hundreds of optical paths. Hence, we look at approaches that partition the communi-
cation structures into segments similar to Moustafa et al. [Mohamed et al. 2014].

2.1.1. Efficient Power Waveguides. Designing the power waveguides is non-trivial be-
cause they typically use cascading beam splitters to distribute power to stations, and
each such splitter is associated with a power loss. Cascading them increases the power
consumption exponentially [Peter and Sarangi 2015]. We use the optimal (in terms of
power loss) chain and tree based designs proposed by Peter et al. [Peter and Sarangi
2015] in our work. Peter et al. propose a single cycle solution to dynamically compute
optimal split ratios using a table lookup based approach. Second, based on predicted
activity and laser power, we need to dynamically change the split ratios of beam split-
ters. We use the single cycle splitter based on ring resonators proposed by Peter et
al. [Peter et al. 2016]. The original paper had limited split ratios – from 1:1 till 1:2.5.
We extend the range to 1:15 by cascading 2-3 such splitters in this work.

2.2. Schemes to Reduce Static Power Consumption
2.2.1. Power Sharing. The basic idea in channel sharing is that multiple nodes can

either use the same waveguide to transmit messages or share power between them-
selves. SUOR [Wu et al. 2014] proposes to use a waveguide simultaneously to transmit
multiple messages between sender-receiver pairs when the paths (from sender to re-
ceiver) are disjoint. ColdBus [Peter et al. 2015] proposes an extra power waveguide,
which can supply some power to stations on demand (arbitration via tokens). In con-
trast, the wavelength stealing scheme [Zulfiqar et al. 2013] steals the wavelengths
allotted to other nodes in the system. Collisions are detected using erasure coding.
Xu et al. [Xu et al. 2012] propose a method in which two nodes share a waveguide.
They save power by reducing the number of ring resonators and receivers. Likewise,
Chittamuru et al. [Chittamuru et al. 2017] proposed an MWMR topology in which the
nodes dynamically transfer the unused bandwidth to the other nodes in the system.
Moreover, the authors propose to monitor the traffic injected into the network and then
distribute the bandwidth accordingly. None of these proposals were found to scale to
such large systems.

2.2.2. Laser Modulation. Some proposals propose to turn off the laser when not in
use [Demir and Hardavellas 2014]. If we turn off the laser, we have to decide when
to turn it back on. This cannot be done on demand because it takes time to send a mes-
sage to the off-chip laser. Hence, we need to predict the network activity before hand.
In order to predict and turn the laser on, the standard approach is to split the entire
duration of an execution into fixed duration epochs. The predictor predicts in which
epoch the laser should be turned on. Probe [Zhou and Kodi 2013] proposes to use a
predictor based on link and buffer utilization statistics and ColdBus proposes to use a
predictor based on the PCs of memory instructions. Similarly, Chen et al. [Chen and
Joshi 2013] propose to turn off some portions of the network depending upon the band-

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:5

width requirements. In this proposal, we use a novel predictor based on the history of
network traffic and the average waiting time of messages at a station.

3. MOTIVATION

barnes
bodytrack

canneal
dedup ferret

fluidanimate
raytrace

streamcluster
Mean

0

Non-Coherence Coherence

0.5

Fr
ac

tio
n

of
 to

ta
l m

es
sa

ge
s

Fig. 2: Categorization of messages in a network

Here we look at some of the salient features of our workloads, and try to derive some
insights regarding the design of a 1000+ node optical network.

3.1. Separate Networks
We ran simulations for a system with simple 2-issue in-order cores as described in Sec-
tion 5.2 by assuming a hypothetical point-to-point network topology. We ran a subset
of benchmarks (that scale) from the Parsec benchmark suite [Bienia et al. 2008]. The
results of the simulation (see Figure 2) show that on an average more than 50% of the
traffic injected into the network is due to non-coherence messages: the communication
between L1 and L2 caches, between L2 cache banks, and traffic to/from the memory
controllers. The remaining traffic is accounted for by the coherence messages between
the private L1 caches. Based on this, let us derive Insight: Separate-Network, which
is that let us have a separate network for coherence messages, and a separate network
for non-coherence messages. Most of the non-coherence messages are messages meant
to find out if a certain block is present in a cache bank. These messages should be
routed on a separate sub-network as per our observations in Figure 2. Let us thus
propose a separate sub-network for exclusively connecting all the L2 cache banks.

3.2. Creating Additional Spatial Locality
Let us once again consider non-coherence messages, where a majority of messages are
sent from private L1 caches to L2 cache banks. In a naive scheme, the L2 cache line can
be present in any cache bank (anywhere on the chip). Let us divide the network into
multiple sub-networks, where each sub-network connects 1/Kth the number of cores
and cache banks. We have empirically determined that K = 4 is the best choice. Let
us refer to each sub-network as a quadrant. It would be best if we find the L2 cache
line within the quadrant of the requesting L1 cache. This can explicitly be ensured by
using non-uniform cache access (NUCA) techniques. Let us create sets of 4 cache banks
called bank sets, where each bank set has exactly 1 cache bank in each quadrant. A
cache line is allowed to migrate to any other cache bank within its corresponding bank
set. In the worst case we need to search for a line in all the 4 cache banks in a bank
set.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:6 Bashir et al.

Now, we can use this mechanism to create spatial locality, by migrating a requested
cache line to the quadrant of the requesting core. This can be trivially achieved by
swapping two entries between two cache banks belonging to the same bank set. On a
subsequent access, the line will be found in the same quadrant. This will reduce traffic,
and contention. Moreover, the message will also travel through a shorter waveguide
(lesser losses). Figure 2 shows the potential benefit of such a scheme, where the blue
markers indicate the fraction of messages that will travel within only one quadrant.
We observe that 36% of the messages can be restricted to only one quadrant for non-
coherence messages. Thus we have, Insight: Use-NUCA use NUCA policies to reduce
contention and increase locality.

3.3. Traffic Imbalance

barnes bodytrack canneal dedup ferret fluidanimate raytrace streamcluster

70%

60%

50%

40%

30%

20%

10%

0%

100%

80%

90%

T
r
a
ffi

c
 I
n
je

c
t
e
d

Fig. 3: Traffic injected across 16 stations

In our workloads nodes inject a varying amount of traffic into the network. We plot-
ted the relative traffic injected for a representative group of 16 adjacent stations in
Figure 3. Here each color represents the percentage of traffic injected by the station.
It is clear that some stations in a network will require much more bandwidth than
the others because the ratio of traffic injected between the top 2 most active stations
can be as high as 10:1. Thus, it is necessary to have a dynamic load balancing scheme
by sharing data and power networks between adjacent nodes. Insight: Share-Power
share the data and power networks between adjacent nodes if possible.

4. ARCHITECTURE
4.1. Structure
In this paper we propose a system with 768 cores and 256 cache banks (see Figure 4(a)).
Each core in BigBus is a dual-issue in-order RISC processor similar to the cores used
by competing work (ATAC [Kurian et al. 2010]). Arranging the cores, cache banks,
and optical links is a non-trivial problem primarily because of the scale of the system.
Related work that considers a smaller number of cores and cache banks did not give
due consideration to this problem because with fewer stations, locations of stations are
not all that important. We can either use a simple full SWMR based crossbar or a mesh
based network with simple path setup algorithms. However, with 1024 communicating
nodes, the arrangement of stations, and their layout become important problems. We
cannot afford long waveguides because of their high optical losses. Let us use some of
the insights derived from Section 3 to create our network.

We place some cache banks close to some of the cores to decrease the access latency.
These cores and cache banks can be connected together by a common waveguide in

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:7

Core L2 Cache Bank

Power - Tree

Power - Intra P-cluster

Top level and CB cluster

P-Cluster

CB-Cluster

Top level

Hub

(a)

(b) (c)

(d)

O-
Cl

us
te

r

Tunable
Splitter

Power
waveguide

O-
lin

k

CB-link

O-Clusters and O-links

Logical Layer

Photonic Layers

Laser Layer

Thermal Interface
Spreader

Hint Sink

100

0.6

5

20

(μm)

(e)
Cross-sectional view of our target system

Through-silicon vias (TSV)

Fig. 4: Architecture

order to limit the length of data waveguides. We have adopted this insight in BigBus,
where we have placed the cache banks at the center and the cores at the periphery
of the chip. We recognize square blocks of 4 cores or 4 cache banks, and refer to them
as a cluster. Intra-cluster communication is electrical, and inter-cluster communica-
tion is optical. This cluster size was found to be optimal in terms of both performance
and power (determined empirically). Each cluster has an optical station. We then pro-
ceed to build larger clusters: 16 clusters (arranged as a 4× 4 square) form a P-Cluster
(see Figure 4(a)), and each O-Cluster contains 4 P-Clusters. A P-Cluster, thus, contains
64 cores/cache banks, and an O-Cluster contains 192 cores and 64 cache banks (3 P-
Clusters of cores and one P-Cluster of cache banks). We thus have 4 O-Clusters in our
system. Note that our design is not very specific to the idiosyncrasies of the target sys-
tem. For a different system, we can apply the same principles to create a similar
network.

4.1.1. Data Network. The cache banks and cores in an O-Cluster are connected together
by a serpentine structured optical link (called O-Link) [Vantrease et al. 2008; Pan et al.
2009] (see Figure 4(a)). The serpentine structure is simple, well studied, and does not
require explicit path-setup or routing. All these approaches save power. Additionally,
we define a separate optical link to connect all the cache banks at the center of the chip
called CB-Link (Insight Separate-Network in Section 3). The set of all cache banks
is called the CB-Cluster (see Figure 4(b)). Lastly, we define an optical link called the
top level link that connects all the O-Links together. It is attached to each O-Link via a
hub (containing a message queue), which is a dedicated structure that transfers data
between O-Links.

4.1.2. Power Delivery Network. We have four off-chip 1550 nm laser sources connected to
the chip at 4 separate points – one for each O-Cluster (see Figure 4(c)). Each input uses
tapered waveguides to minimize the insertion loss [Humphrey 1994]. Subsequently,
we use a tree based network to distribute power to the 4 constituent P-Clusters. Each

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:8 Bashir et al.

P-Cluster has several serpentine shaped (logical ring) power waveguides (running in
parallel) that distribute power to all the constituent stations. Each station then uses
tunable ring resonators to source the power and use it for data transmission (see Fig-
ure 4(d)).

Off chip On chip

SC

(a)

To Hub

Data WG Reservation
Channel

(b)

Backbone WG

Token

HC

To Top/
lower
level

(c)

Backbone WG

To
ke

n

Pr
e
d

ic
ti

o
n

Comb wavelength splitter Tunable splitter Laser controller

Prediction WG(Parallel with O-Link)

To P-Cluster

O-Link

1

2

34

Fig. 5: Optical network

At each P-Cluster, we use a comb splitter [Levy et al. 2011] (also see [Peter et al.
2015; Thakkar et al. 2016]), which is used to split a monochromatic optical signal (at
1550 nm) into 64 equally spaced wavelengths (between 1450-1650 nm). The additional
area overhead is limited to 0.17% [Levy et al. 2011]. We use DWDM (dense wave-
length division multiplexing) technology to transmit all these separate wavelengths
on the same waveguide. Subsequently, we use a set of 16 cascading tunable optical
splitters (see [Peter et al. 2016]) to split the DWDM signal into 17 parts. Now, each
part of the optical signal is assigned to one waveguide: 16 backbone waveguides, and
1 token waveguide. All of these waveguides run parallel to each other and have a ser-
pentine layout as shown in Figure 5(a). A station can source power from the backbone
waveguides only if it has a token. Note that each P-Cluster need not be assigned the
same amount of power (depends on the predicted activity of each station).

Figure 4(e) shows the cross-sectional 3D view of our final design. It is clear from
the figure that our architecture is a multi-level design in which different layers are
stacked on top of each other using a popular through-silicon via (TSV) 3-D integration
approach [Topol et al. 2006; Gu and Xu 2009]. It is the most popular design choice and
has been adopted in various 3D network topologies in order to increase the network
performance [Ye et al. 2009; Ye et al. 2013].

4.2. Channel Sharing and Data Transmission
We assume that power is shared between the nodes in a P-Cluster and not across nodes
in different P-Clusters (Insight Share-Power in Section 3). For each P-Cluster we cir-
culate a certain number of tokens (1 token = power of 1 unicast) on the token waveg-
uide corresponding to that P-Cluster. We use a maximum of 16 tokens on the token
waveguide. A station can grab tokens from only the token waveguide corresponding to
its P-Cluster.

Now, to transmit a message, a station needs to grab a token designated for its P-
Cluster from the token waveguide. After a station obtains a token from the token
waveguide, it can access one of the backbone waveguides, draw power from it, and
use it to transmit a message along a data waveguide. The details are as follows.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:9

In the token waveguide, we pass different numbers of logical tokens for different
P-Clusters. Let us assume that for a given P-Cluster, we pass N logical tokens. Here,
each token corresponds to 1 wavelength (Assumption: wavelengths are numbered from
1 to N). The token waveguide is similar to the data waveguide and it makes a single
pass through all the optical stations. If a station intends to send a message, it first
tries to grab a token. It selects a number at random between 1 and N (let’s say i), and
checks if the ith token is available with the help of a ring resonator. If it is able to
detect a signal (meaning: token is available), it tries to absorb the optical power in the
ith power waveguide. If the ith wavelength is not available, it tries to check for the ((i
+ 1)%N)th wavelength and so on.

After N unsuccessful tries, we give up and wait for the next epoch. This approach
guarantees mutual exclusion, yet is not necessarily fair. Nevertheless, we found this so-
lution to be fast, and approximately fair. Hence, we use this scheme and did not choose
more sophisticated yet slower and elaborate optical arbitration schemes [Vantrease
et al. 2009] that guarantee fairness.

Once a station gets the ith token, it is free to source power from the ith backbone
waveguide. Figure 5(b) shows this process. We use double pumped signaling (modula-
tion at both edges of the clock) for transmission (similar to Corona [Vantrease et al.
2008]), which means that we can transmit 2 messages per clock cycle. For the first half
cycle, we transmit a reservation packet that turns the receiver on (1 bit for each re-
ceiver). After that we transmit one 64-bit flit per half-cycle. After the transmission, we
stop sourcing power from the backbone waveguide and return the token (stop diverting
the corresponding wavelength).

4.2.1. Data Transmission. To pass a message from one node to another, we use the data
waveguides. Data waveguides in our system consist of 4 O-Links, a CB-Link and a
top level link. A message can be internal to an O-Cluster or the CB-Cluster or might
span across these clusters. In the first two cases, the message passes through the cor-
responding intra-cluster waveguide to reach the destination. In the third case, the
message requires a minimum of 3 hops. First it travels to the hub, then it moves to the
hub of the destination O-Cluster via the top level link, and then it travels within the
destination’s O-Cluster. We have a dedicated queue at each hub that buffers packets.

Let us first consider a naive scheme called BigBus No Share (BigBus NS). Here we
use SWMR [Vantrease et al. 2008] waveguides, where every node has its own dedicated
data waveguide to send data to any station within its O-Cluster. This means there are
64 parallel waveguides in the bundle of O-Link and CB-Link waveguides (correspond-
ing to the 64 optical stations in an O-Cluster). We first grab token i to source power
from the backbone power waveguide i, and then transmit a message using a station’s
dedicated data waveguide. Let us now consider a more sophisticated scheme.

4.2.2. Partially Shared Scheme. Here, we have 64 parallel waveguides divided into four
groups (G1 . . . G4) of 16 (one group per P-Cluster). Stations in P-Cluster i can trans-
mit messages on any waveguide in group Gi. However, they cannot transmit messages
on waveguides in other groups. Each such waveguide is a p-MWMR (partial MWMR)
waveguide. This means that only stations in its corresponding group can transmit mes-
sages (16 such stations) but all the stations (64) in its O-Cluster can receive messages.
To access the shared data waveguide we use the result of the arbitration for the power
waveguide and no extra arbitration is required. If we get access to the ith backbone
waveguide in the bundle of power waveguides, we infer a permission to access the
ith data waveguide as well. As per Insight Share-Power, we try to leverage unused
power as follows. If a station has multiple messages waiting in its queue, then it tries
to grab multiple tokens (1 token corresponding to each waveguide). The advantage of
this scheme is that we can send more messages in parallel, and improve performance.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:10 Bashir et al.

Also if a token is available it means that some laser is generating power. Instead of
wasting it, it is better if stations within a P-Cluster can use it. We call this configura-
tion as BigBus PS.

Finally, we consider a fully shared scheme in which any node in an O-Cluster can
arbitrate for any token. When we go for a fully shared data bus, the complexity of token
arbitration becomes high. The power waveguide and the token waveguide need to pass
through 64 stations (parallel to the data waveguide). The number of stations waiting
for the token increases. At the same time, the number of transmitters and receivers
required at a station increases from 16 to 64, which makes the fully shared scheme
practically infeasible.

Note that in all these schemes, multiple receivers are capable of receiving data from
a same waveguide. However, we are using the reservation based approach proposed by
Pan et al. [Pan et al. 2009] in which receivers, by default, are mostly turned off. Before
sending a message, the standard approach is to turn on the receivers by sending a
reservation flit, and then transmit the message.

4.3. Activity Prediction
The number of tokens that needs to be transmitted on the token waveguide needs to be
accurately determined for each P-Cluster. We do not want to send a lot of tokens (power
wastage), neither too few tokens (too much of contention). As a result, we divide time
into fixed size durations called epochs and devise a prediction mechanism to predict
the number of tokens that we require in the subsequent epoch. We then modulate the
off-chip laser to produce just enough power in the next epoch such that we can transmit
power equivalent to N tokens, where N is the predicted number of tokens.

The novel prediction scheme is designed to consider the current trends in traffic
along with historical values. Activity prediction is done in two stages. In the first stage,
each station decides whether to increase or decrease tokens based on a function that
has two inputs: wait time (T) and the number of pending events (N) at that station.
The output of this function, F , is 0, 1, 2, or 3. Here we give priority to the number of
pending events over the wait time. The rules are shown below in decreasing order of
precedence. Tp = 8, and Tw = epoch size/2. We have given priority to the number of
pending events to improve the performance as we noticed that in the case of a sudden
increase in traffic, the number of pending events can be higher.

F(T ,N) =


3 N ≥ Tp
2 T ≥ Tw‖Tp/2 ≥ N < Tp
1 Tw/2 ≤ T < Tw‖N < Tp/2

0 T < Tw/2

We assume a dedicated prediction waveguide that runs through all the stations of an
O-Cluster. It is powered by the off-chip laser. We divert 1 unit of power (corresponding
to 1 unicast) to it 9 cycles before the end of the epoch. The comb splitter [Levy et al.
2011] associated with it produces 64 different wavelengths (1 for each station). We
use an active-low based signaling strategy, and assign a wavelength to each station in
the O-Cluster. In two half-cycles, all the stations can encode (using ring resonators)
two bits and send their information back to a dedicated structure called the (laser
controller) LCntrlr, which collates all the predictions.

The LCntrlr’s first task is to add all the 2-bit values. To add 64 2-bit numbers, we
first add sets of 4 2-bit numbers (16 such sets) in parallel using a lookup table (42 ps,
and 0.2nJ energy consumption, computed using Cacti 5.3 [Thoziyoor et al. 2008] and
scaled using the results in [Huang et al. 2011]). We now have 16 partial sums, where
each sum is at the most 12. Now, we use another lookup table to again add two partial

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:11

sums at a time to generate 8 partial sums (another 42 ps and 0.2nJ energy). We now
have 8 partial sums each being 5 bits. We next use a 3-level tree of adders to add them.
The final output is 8 bits. Using numbers from [Herr et al. 2013], we observe that we
can finish all the additions in 450 ps, consuming 1.5µW of power . The total energy
consumed is less than 2µW and the total time is 534 ps, which is well within 1 clock
cycle (@1.5 GHz). Let the computed sum be S. We consider the top three MSB bits of S
and map the values represented by the three bits ([0..7]) to the set [-3..4]. We consider
the top three MSB bits to make the hardware simpler. Let the mapped value be V .

Let us now take historical information into account. Let us maintain a 10-bit shift
register, where the ith bit contains the MSB of the number of tokens supplied in the
ith previous epoch. We use the 10 bit value in this shift register to access a history
table with 1024 entries (all entries initialized to 0). Each entry contains a predicted
value (P) for the number of tokens. For the current epoch, let the predicted value be
Pc. We set it to Pc+V , in the history table, and use the value (Pc+V) as the number of
predicted tokens in the next epoch. This shift register can be accessed in a single cycle
(31 ps) and consumes 120pJ of energy (calculated using Cacti 5.3).

4.4. Network Reconfiguration

Actions Cycles
Prediction Phase

Calculate the function F at stations 1
Send prediction to the laser controller* 1
Collate recommendations and make prediction 2
Calculate the split ratios and power 2

Parallel Activity 1 Parallel Activity 2
Send to the off chip laser
(E/0+tran+O/E) 2

Send split ratios
to the splitters 1

Reconfiguration Phase*
Compute laser array config. 1 Table access in P-Cluster 1
Laser retuning 1 Reconfigure splitters 1
Total 10

* Network inactive

Table I: Prediction and reconfiguration

We use the technique proposed by Peter et al. [Peter and Sarangi 2015] for the power
distribution tree in an O-Cluster, which has four leaf nodes (1 in each P-Cluster). We
quantize the laser power using 5 bits (32 levels). Thus, at each leaf node we have 1024
combinations of power for both the branches. As suggested by Peter et al. we keep a
10-bit table in hardware, where for each combination of power in the branches, we
store the input power, and the split ratios of the splitters. In less than 2 cycles [Peter
and Sarangi 2015], we can access this table and compute the power requirement for
the entire O-Cluster and the split ratios (6-bits) of all the splitters.

We have 16 splitters at each P-Cluster. We need to compute their split ratios. The
input to each P-Cluster in the reconfiguration stage is the number of backbone waveg-
uides that need to be activated (carry power). This is a number, κ, between 0 and 16.
We separately save the split ratios for each splitter when κ = 16. For the rest, we en-
vision a 16 entry table, where each row saves the split ratios of the 16 splitters (each 6
bits). The size of this table is: 16×16×6/8 bytes = 192 bytes. This can be replicated for
each P-Cluster. Table I shows the sequence of actions for predicting and reconfiguring

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:12 Bashir et al.

the network. We require a total of 10 cycles for prediction and reconfiguration. Out of
these in 3 cycles, the network cannot be used for data transmission.

4.5. NUCA Protocol
As per Insight Use-NUCA (Section 3), we divide the address space of L2 blocks into
64 sets by considering the 6 least significant bits (LSB) of the L2 block address. We
assume that each of the 64 cache banks in an O-Cluster is mapped to a distinct bank
set. Also note that in each bank set we have 4 banks: one in each O-Cluster. Now,
when there is an L1 miss, we first extract the 6 LSB bits from the L2 block address,
and access the corresponding bank in the same O-Cluster. This bank is called the home
bank for the O-Cluster. If there is a miss in the home bank, we access the rest of the
three banks in its set. We use the CB-Link for sending these messages. If there is a
miss in the rest of the three banks, we send the request to main memory. Otherwise, if
there is a hit in any of the banks, we migrate the block to the home bank.

5. EVALUATION

Parameter Value Parameter Value
Cores 768 Technology 10 nm
Frequency 1.0 GHz

Processor Core
Pipeline Dual-issue In-order IW size 54
iTLB 128 entry dTLB 128 entry

Private L1 i-cache, d-cache
Write-mode Write-back Block size 64 bytes
Associativity 4 Size 32 kB
Latency 2 cycles MSHRs 32
Directory fully mapped, 16-banked, distributed

MOESI, 16384 entries, 8-way
Shared L2

Write-mode Write-back Block size 64 bytes
Associativity 4 # banks 256
Latency (per bank) 8 cycles Bank size 256 KB

Main Memory
Latency 150 cycles Mem. controllers 32

Queue Sizes
Station Queue 16 Hub Queue 200

Electrical NoC
Topology 2-D Mesh Routing Alg. X-Y
Flit size 256-bit Link Traversal 1 cycle
Routing delay 2/3 cycles # Virt. channels 4
(w/wo bypassing) Buffers/port 8

Auxiliary structures (size in number of entries)
RCB 128 VB 20
MQ 16

Table II: Simulation parameters (also see [Kurian et al. 2010])

5.1. Experimental Setup
To evaluate the performance of the proposed system we ran simulations using the
cycle architectural simulator Tejas [Sarangi et al. 2015], which has extensive sup-
port for modeling optical interconnects. Furthermore, it uses the Orion 2 [Kahng et al.
2011] and McPat tools [Li et al. 2009] for computing the power consumption. All the
simulation tools – Orion, McPat, and Tejas – have been thoroughly validated against
native hardware. Unlike other works that either do not perform thermal simulation

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:13

Optical Parameters
Wavelength (λ) 1.55µm
Waveguide Width (Wg) 0.5µm
Waveguide Thickness 0.2µm
Refractive Index of SiO2(nr) 1.46
Refractive Index of Si (nc) 3.45
Input Driver Power 76 µW
Output Driver Power 166 µW
Insertion Coupling Loss 50%
Output Coupling Loss 13%
Photodetector quantum efficiency 0.8 A/W
Photodetector minimum power 36 µW
Combined transmitter and receiver delay 180-270 ps
Optical propagation delay 7 ps/mm
Electrical propagation delay 35 ps/mm
Bending Loss 1 dB
Waveguide Loss 0.5 dB/cm
Coupler Loss 1 dB
Photodetector 0.1 dB
Wall Plug Efficiency 20 %
Splitter Loss 0.36 dB
Micro-heater power 1 µW/◦C

Table III: Optical Parameters [Pan et al. 2010; Reed 2008; O’Connor 2004; Peter et al. 2017]

or use mean values for microring trimming power, we perform detailed analyses us-
ing a thermal simulator, HotSpot [Zhang et al. 2015], and then derive an accurate
estimate of the trimming power. We use benchmarks from the Parsec and Splash2
benchmark suites [Bienia et al. 2008; Woo et al. 1995] for simulations. Out of the 12
benchmarks from the Parsec suite, blackscholes and facesim could at the most run on
128 cores. Hence, we do not consider them. vips and x264 have fairly long sequen-
tial sections, and thus we did not find them suitable. ferret and fluidanimate can only
run on systems where the number of cores is a power of 2. Hence, we used 512 cores
for these benchmarks. For the rest of benchmarks we could run them on 768 cores.
Out of the 12 benchmarks in the Splash2 benchmark suite, fmm and barnes run on
768 cores while lu-contiguous, ocean-conti and fft run on 512 cores. We do not use the
rest of the Splash2 benchmarks as they run on a fewer number of cores. These are
standard workloads used for evaluating such large systems [Kurian et al. 2010]. Fi-
nally, note that all the performance numbers in this paper use the simulated
execution time of the entire benchmark as the basis.

We compare BigBus with three other state of the art photonics based multicore
architectures namely Probe [Zhou and Kodi 2013], ColdBus [Peter et al. 2015] and
ATAC [Kurian et al. 2010]. For a fair comparison, we have made some modifications to
these architectures. Probe is a 64 core architecture that mainly focuses on the predic-
tion mechanism, power distribution using multiple lasers and laser modulation. Here
each station predicts whether it will be active or not in the next epoch, and the laser
allocates power based on this prediction. We use the segmented power distribution (P-
Cluster based) scheme for Probe, because a single power waveguide will not scale for
a thousand node system. While simulating Probe, we use its activity prediction and
laser modulation schemes. We call this configuration mProbe. ATAC is a 1024-core
nanophotonics based system, which uses an unmodulated laser, and a three layer hi-
erarchical network. To simulate ATAC, we use their power network, which does not
use any laser modulation techniques. Here also we use our segmented power distribu-
tion scheme because of scalability issues. We call this configuration mATAC. We do not
show the results for [Abellán et al. 2016] as it uses a similar laser modulation scheme

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:14 Bashir et al.

as mATAC, and thus has similar power consumption numbers. Like Probe, ColdBus
also assigns optical power on a per station basis with an additional extra waveguide
for providing contingency power. We simulate ColdBus [Peter et al. 2015] with the
segmented power delivery network.

Note that the main difficulty while comparing with other such systems is that we
cannot just replace one network by another. The network is co-designed with LLC
cache access protocols, cache coherence protocols, and the optical components. As a
result some modifications were required to ensure a level playing field. Note that in all
the architectures we are using 768 cores and 256 cache banks.

The hardware costs of all the configurations are almost the same with some minor
differences in terms of number of ring resonators used in each scheme. Table IV sum-
marizes the optical component requirements of the BigBus PS scheme. It should be
noted that the BigBus PS requires the highest number of ring resonators as it draws
optical power from multiple waveguides, whereas mATAC uses the least number of
ring resonators, as it does not use any laser modulation technique. The number of ring
resonators required in BigBus PS scheme is nearly 13% more than those used in other
schemes.

Optical system # of waveguides # of ring resonators
Power Delivery 16× 16 ≈260K
Data Network 64× 5 ≈1600K

Arbitration 16 ≈4K
Prediction 16 ≈1K

Total 608 ≈1800K

Table IV: Optical Components

Section 5.2 explains the target system, and Table III shows the parameters of the
optical network. The power analysis is done in Section 5.3. We compare our optical
network with a state of the art electrical network (electrical noc parameters are given
in Table II) in Section 5.4, and find the electrical network to be 53% slower. In Sec-
tion 5.11 we perform detailed thermal simulations of our design, and calculate the
micro-ring trimming power that is required to make all the rings operate at a pre-
specified maximum temperature. The trimming power was found to be in the vicinity
of 5-6W, which is very reasonable.

5.2. Target System
Table II shows the architectural parameters for the target system. The system is a
768 core chip fabricated at 10nm technology. It is based on a tile based architecture
containing 768 cores and 256 cache banks with 4 nodes on each tile (node↔core/cache
bank). The granularity of 4 was found to be optimal in terms of both performance and
power (determined empirically). The chip operates at 1GHz frequency and has an area
of 400mm2. Each core is a dual issue in-order core with a 32KB I/D private L1 cache.
The chip has a shared L2 cache in the form of 256 cache banks with a capacity of
256KB each. The overall size of the L2 cache is 64MB, which is reasonable at 10nm
technology given that a 100 core chip, TILE-Mx, already has an on-chip cache of size
40MB. Based on experimental results, we did not find the need to have an L3 cache
with private L2 caches.

In our topology, each cluster has an optical station which is connected to both the
power and data waveguides. It filters out the power from power waveguides, mod-
ulates the light and sends the information through the data waveguides. All these

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:15

objectives are achieved using a set of ring resonators. In addition, we use a double
pumping strategy in which the data is transmitted at both edges of the clock (similar
to Corona [Vantrease et al. 2008]). Thus, on a single waveguide we can transmit 128
bits of data per clock. In our design, we assume a cache line of size 64 bytes and there
is effectively 1 waveguide per station. Thus, we can transfer the entire cache line in
5 flits (first flit being the reservation flit). Thus, the total bandwidth of the system is
16 GBPS. For an electrical network, we assume a mesh topology with a router traver-
sal time of 2/3 cycles [Balfour and Dally 2014]. Routing related decisions are taken in
the first cycle and the switch traversal occurs in the second cycle (See Table II for the
electrical NoC parameters).

5.3. Power Model
In optical interconnects, the total power required to send a message is the sum of
power consumed by electrical components such as drivers, and receivers, and power
consumed by optical components. The power consumed by optical components also in-
cludes the optical losses that occur during the propagation of light through the optical
waveguides such as distance dependent power loss, bending loss, coupling loss, waveg-
uide crossing loss, and the power loss that occurs while travelling across the ring res-
onators. However, in electrical interconnects the messages have to travel from one hop
to another and hence consumes power in several different ways such as power con-
sumed in traversing the crossbars in the electrical routers, power consumed in electric
buffers and the power losses that occur while traversing the metallic interconnects.

For electrical interconnects, we assume that the state-of-art electrical links at 10nm
technology consume 13pJ of energy for transmitting 128-bit message [Joshi et al. 2009;
Pan et al. 2009; Batten et al. 2008] and 16pJ of energy is required to traverse through
the crossbar of an electrical router [Joshi et al. 2009; Pan et al. 2009]. Thus, the to-
tal energy required to transmit a single flit (128 bits) in an electrical interconnect is
29pJ/flit/hop. However, for optical interconnects, we adopted the analytical model pro-
posed by Joshi et al. [Joshi et al. 2009] to calculate the total energy consumed by each
message. The various optical losses that occur during the course of data transmission
are modelled according to the values given in Table III. Based on these parameters, we
analytically calculated the power consumption in an optical network by first finding
the minimum power required by the receiver to detect the message. We then calcu-
lated the minimum power required at the modulator by visiting the nodes in reverse
from the receiver to the modulator, including all the losses that occur in between the
sender and a receiver. The minimum power required is calculated using the Pd ∗10A/10

equation, where Pd is the minimum power required at the photodetector and A is the
attenuation occurred (incorporating all the optical losses). Using the analytic model,
we found that the energy required to send a single bit in our proposed optical network
is 1.3pJ .

5.4. Optical vs Electrical Networks
Using optical networks to replace electrical networks for a system is still a debatable
point. There are arguments that say that kilo-core systems with electrical intercon-
nects will not be feasible because of a large number of hops and the resultant NoC
complexity [Sikder et al. 2015]. We carried out simulations in order to compare the
performance of electrical and optical networks for kilo-core systems. We use a mesh
based electrical network proposed by Kumar et al. [Kumar et al. 2002], which we treat
as a baseline, and expanded it to 768 cores. Among kilo-core networks, we found this
network to deliver the highest performance. The results for the simulated execution
time are shown in Figure 6. We compare the scheme by Kumar et al. with BigBus PS.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:16 Bashir et al.

barnes
bodytrack

canneal
dedup ferret fft

fluidanimate fmm

Lu-contiguous
ocean_conti

raytrace

streamcluster
swaptions Mean

0

1.0

2.0

3.0
R

el
at

iv
e

Sp
ee

du
p

Electrical Optical

Fig. 6: Optical vs Electrical Networks

We find BigBus PS to be 53% faster, and thus we do not consider electrical networks
henceforth.

 barnes

 bodytrack
 canneal

 dedup
 ferret fft

 fluidanimate fmm

 lu-contiguous

 ocean-conti

 raytrace

 streamcluster

 swaptions
 Mean

0

1.0

2.0

R
e
la

ti
v
e
 s

p
e
e
d
u
p

mProbe BigBus_NS BigBus_PS mATAC coldBus

Fig. 7: Performance comparison

5.5. Performance (Basis: Simulated Execution Time)
In Figure 7 we compare the performance of different configurations. BigBus NS is the
variant of BigBus with the No Share scheme while BigBus PS is the variant with the
Partial Share scheme. In almost every benchmark BigBus PS and mATAC perform
better as compared to BigBus NS. Here the performance improvement of BigBus PS
is due to the ability to send multiple messages at the same time while in the case of
mATAC, this is because of the availability of optical power all the time. In mProbe, if
we allocate a single unit of optical power to a node, it can be used by that specific sta-
tion. But in the case of BigBus, this is shared among multiple nodes. A misprediction
in the case of mProbe forces the station to wait till the next epoch to get the optical
power, while in BigBus, a station can share optical power among all the nodes in a
P-Cluster. This gives BigBus better performance. Since ColdBus has a backup plan
in case of mispredictions, it performs better than mProbe. ColdBus performs better
than BigBus NS because BigBus NS does not guarantee a specific amount of power

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:17

barnes
bodytrack

canneal
dedup ferret fft

fluidanimate fmm
lu-contiguous

ocean-conti
raytrace

streamcluster
swaptions Mean

0

10.0

R
el

at
iv

e
la

se
r

en
er

gy
 c

on
su

m
pt

io
n

8.0

6.0

4.0

2.0

mProbe BigBus_NS BigBus_PS mATAC coldBus

Fig. 8: Laser energy consumption

to each station; each station needs to always arbitrate for optical power. We observe
that BigBus PS performs better than all the other configurations because it has the
capability to send multiple messages in a single cycle, provided that enough optical
power is available. Compared to mProbe, BigBus NS, ColdBus, and BigBus PS per-
form 11%, 18%, and 34% better respectively. BigBus PS is the best configuration and
is 14% faster than mATAC.

Benchmarks such as barnes,fmm,ferret, and streamcluster show a high speedup.
The reason for this is the very low message wait times of BigBus PS as compared
to mProbe. BigBus PS shows a good improvement for streamcluster because the traffic
is very bursty in nature, and thus sending messages in parallel proves to be very ben-
eficial. Other benchmarks such as barnes, streamcluster, and raytrace show inferior
performance with BigBus NS because of the high wait times as compared to mProbe.

5.6. Energy consumption
Optical energy consumption primarily depends on the duration for which the laser
is turned on. It also depends on the effectiveness of the prediction mechanism and
bandwidth sharing. On the flip side, keeping the laser turned off for a longer time
can decrease performance. Figure 8 shows the relative laser energy consumption. Big-
Bus NS consumes 48% less laser energy as compared to mProbe and 65% less energy
in comparison to BigBus PS. Because of the lack of laser modulation, mATAC is the
most energy consuming configuration. It consumes 10 times more energy as compared
to BigBus NS. Compared to ColdBus, BigBus PS consumes 12% less laser energy.

In all the benchmarks, the energy consumption of BigBus NS is lower compared to
mProbe because we share power among multiple nodes more effectively. In the case of
mProbe, if we assign a certain amount of optical power to a station, it can be used only
by that station. But in the case of BigBus, the power can be shared among multiple
nodes.

It should be noted that the laser power consumed includes the laser power for back-
bone (for sending messages), token and the prediction waveguides. Figure 9 shows the
average optical energy consumption breakdown in a BigBus configuration. The token
waveguide power consumption is less than 2% of the total power consumed and is
roughly the same for every benchmark relative to the total optical power consumed.
The reason is that the power consumed is directly proportional to the number of optical
tokens used. In addition, for the prediction waveguide, we divert 1 unit of power (cor-

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:18 Bashir et al.

responding to 1 unicast) to it 9 cycles before the end of the epoch. As a result, the laser
power consumed for the prediction waveguide is directly proportional to the number of
epochs taken by the simulation to complete. The average amount of laser power con-
sumed by the prediction waveguide in every epoch is less than 0.8% of the total optical
power.

Backbone Power (97.4 %)
Token Power (1.8 %)
Prediction Power (0.8%)

Fig. 9: Optical energy consumption breakdown

5.7. ED2 Comparison
Figure 10 shows the comparison of different configurations in terms of the energy-
delay2 product (ED2). Note that here the energy refers to the energy of the full system.
The delay is the total time taken by the simulation to complete (simulated execution
time). This includes the effect of network congestion, and all other sources of network
induced delay. The values are normalized to those of mProbe. BigBus PS is the best
configuration with a reduction of 61% as compared to mProbe, ColdBus is the second
best configuration (41% reduction), then mATAC with 37% reduction and finally Big-
Bus NS has a reduction of 13%.

 barnes

 bodytrack
 canneal

 dedup
 ferret fft

 fluidanimate fmm

 lu-contiguous

 Ocean-conti

 raytrace

 streamcluster

 swaptions
 Mean

0

1.0

2.0

E
D

^2
 c

o
m

p
a
ri
s
o
n

mProbe BigBus_NS BigBus_PS mATAC coldBus

Fig. 10: ED2 comparison

Let us now look at some benchmark specific trends. In barnes, streamcluster and ray-
trace, the performance of BigBus NS is inferior to other configurations, and this caused
a large increase in the corresponding ED2 metric. In bodytrack, fmm and dedup, the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:19

speedups of BigBus PS and mATAC are high compared to mProbe, which resulted in
a large gain in ED2 numbers. For a similar reason BigBus PS shows a large improve-
ment in ED2 in streamcluster. The high power consumption and lower performance of
mATAC in streamcluster accounts for its high ED2 value. Nevertheless, since mATAC
is faster, in 6 out of 13 benchmarks, the ED2 values of mATAC are lower than Big-
Bus PS. Nevertheless, on an average BigBus PS is much better than mATAC.

5.8. Contention

barnes
bodytrack

canneal
dedup ferret fft

fluidanimate fmm
lu-contiguous

ocean-conti
raytrace

streamcluster
swaptions Mean

0

1.0

R
el

at
iv

e
w

ai
t

tim
e

pe
r r

eq
ue

st

0.5

mProbe BigBus_NS BigBus_PS mATAC coldBus

Fig. 11: Average wait time per request

5.8.1. Wait Time at Queues. In BigBus, we have two kinds of queues: one is at each
station to hold the messages from cores/cache banks and the other is at each hub
connecting the O-Link and the top level link. Due to the presence of many requests at
a time at a station, there can be many messages in the queue, waiting to be sent in the
coming cycles. Also requests at the head of a queue at a station need to wait till they
grab a token. In Figure 11, we show the average wait time of a message at a station
before it gets transmitted. The values are normalized to the mProbe configuration. The
average wait time per request is the least for BigBus PS. Specifically, the lower wait
time in the case of barnes, ferret, fluidanimate and streamcluster is the reason for the
high performance of BigBus PS.

If we consider the exact numbers then the comparison is as follows. In the case of No
Share, streamcluster has the maximum number (115) of wait cycles at a queue while
dedup and ferret have the least (≈25). This explains the roughly similar performance
between the NS and PS schemes for these two benchmarks. If we compare the waiting
times between No Share and Partial Share, the Partial Share configuration always
outperforms No Share because of the sharing mechanism. In Partial Share, the net-
work traffic was efficiently handled by the sharing mechanism so that the messages
could be sent within roughly 10-15 cycles. The Partial Share scheme decreases the
wait time by roughly 71% as compared to the No Share scheme, and this is the main
reason for performance improvement. Note that the terms, message and request, are
used interchangeably in this subsection.

The queue occupancy at a station can increase due to different reasons: (1) the laser
is off due to misprediction (2) the laser power is not available due to high traffic (not
able to acquire a token even if there are tokens), and (3) a station is busy in sending

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:20 Bashir et al.

some other messages (only in the case of NS) of some other nodes in the same cluster.
Please refer to Table V.

We encounter requests waiting because of reason (1) very infrequently. Column (A)
shows the fraction of requests in the queue because of reason (2). We observe that
for NS, this reason accounts for only 1.7% of total requests, whereas it accounts for
roughly 99% of requests in the case of PS. The remaining requests in the case of PS
cannot be transmitted because of reason (1) (laser power not available). Column (B)
shows the fraction of messages for NS that cannot be transmitted because of reason
(3) (station is busy in sending other messages). This reason accounts for 98% of all
requests.

A high value in column (A) denotes that the activity in P-Clusters was high and we
fell short of tokens. A high value in column (B) means that (only in the case of NS)
there were too many requests at a station. Let us consider the case of streamcluster,
we can see that almost 99.98% of requests are there in the queue because a lot of nodes
within a station tried to simultaneously send messages. This is because of the bursty
nature of the benchmark. It also means that only a few clusters were very active, and
the rest were inactive; otherwise, we would have fallen short of tokens (because the
value in column (A) is very low: 0.02).

Benchmarks

Frac. reqs.
due to reason

(2) (%) (A)
Frac. reqs. due
to Reason (3)
for NS (%) (B)

Average # of requests
in the system per

epoch (C)

Average # of tokens
in the system
per epoch (D)

of queue overflows
per epoch in a hub
with queue size(E)NS PS NS PS mProbe NS PS

barnes 0.4 99.86 99.59 536.8 1156.54 609.57 25.59 119.39 3.68
bodytrack 0.65 95.89 99.31 421.25 468.89 282.57 27.41 93.05 0.68
canneal 1.95 99.85 98.04 647.63 850.98 703.91 28.84 107.4 2.11
dedup 1.01 97.75 98.97 135.37 149.36 96.21 21.42 86.57 0.34
ferret 2.01 99.82 98.11 194.43 223.94 128.83 19.38 78.12 0.02
fft 3.81 99.92 96.18 851.05 1082.74 491.38 32.95 110.05 3.31
fluidanimate 0.11 99.77 99.88 573.19 940.26 487.05 55.94 109.93 1.98
fmm 4.5 99.9 95.49 744.91 947.83 635.11 29.06 110.31 2.88
lu-contiguous 1.16 98.91 97.03 653.18 859.47 585.4 31.83 114.21 1.21
ocean-conti 2.89 99.19 96.13 732.14 877.38 603.18 26.45 103.65 2.36
raytrace 1.35 99.8 98.64 641.11 1069.23 834.61 26.6 112.77 3.58
streamcluster 0.02 99.94 99.98 375.73 880.05 380.97 30.89 102.28 2.48
swaptions 2.73 99.64 97.16 447.38 628.42 338.7 28.17 107.59 3.07
Mean 1.74 99.25 98.04 534.94 779.62 475.19 29.58 104.26 2.13

Table V: Analysis of contention

5.8.2. Number of requests. The number of requests per epoch can increase till roughly
800. We show the mean of these distributions in column (C) (note that it is across the
entire system). The average number of requests vary between 300-1100 for the entire
system (in the case of PS). We do not count intra-cluster messages using the electrical
network. The number of requests is high in the case of PS, because the number of
epochs are fewer (PS runs faster).

In column (D), we show the average number of tokens generated per epoch. The
number of tokens is directly proportional to the optical energy consumption. We ob-
serve that the number of tokens in PS is roughly 3.5 times more than in NS. It is true
that the wait times in PS are lower. However, we have given a priority to the length of
the queue while predicting the number of tokens. As shown in column (A), in PS the
activity is higher and as a result more requests are generated, and almost all these
requests wait in the queue for other requests to complete. They thus end up increasing
the occupancy’s of the queues, and this leads to more tokens being generated.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:21

5.8.3. Contention at Hubs. We have a queue at each of the 4 hubs. In column (E) of
Table V, we show the average number of overflows in a hub’s queue per epoch using a
queue of size 100. We can see an average of 2.5 overflow in every epoch. If we increase
the size of the queue to 200, the average number of overflows per epoch in a hub
reduces to nearly half.

5.9. Accuracy of Prediction
In BigBus, the optical power is predicted every epoch. It is not possible to directly as-
certain the accuracy of prediction, because of the following reasons. Optical power is
not a binary value, rather it can take 32 values. Second, since the power is shared
across stations in a P-Cluster, even if we predict a lower amount of power, it might
not make a big difference. There will be a delay in sending messages; however, this
delay can get subsequently masked. It is thus impossible to exactly assess the impact
of provisioning lesser or higher power. Instead, we can use the “increase in queue occu-
pancy due to unavailability of laser power” as an indirect measure. This will quantify
the contention in queues due to lack of power. The average value of this parameter is
less than 0.01 per hundred requests. This shows that the accuracy of our prediction
mechanism is very high.

Along with queue occupancy, we have shown the average wait time per request for
different configurations in Figure 11. This also acts as an indirect measure of the pre-
diction accuracy. As the wait time increases, we can assume that the prediction is
wrong most of the time because the unavailability of optical power results in increased
wait time. In all the configurations, BigBus PS has the least average wait time per
request, which clearly shows that the accuracy of our prediction mechanism is very
high.

5.10. Different Epoch Sizes

barnes
bodytrack

canneal
dedup ferret fft

fluidanimate fmm
lu-contiguous

ocean-conti
raytrace

streamcluster
swaptions Mean

0

1.0

R
el

at
iv

e
sp

ee
du

p

0.5

50 100 200

Fig. 12: Performance comparison using different epoch sizes

To evaluate the effect of different epoch sizes, we compare the speedup of BigBus PS
with different epoch sizes: 50, 100 and 200 (see Figure 12). In every epoch, we have
a fixed duration in which the network is kept inactive to reconfigure the laser power
and split ratios of the tunable splitters. Hence, the effective epoch size reduces, and
the performance can degrade due to this inactive period. For large epoch sizes, the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:22 Bashir et al.

impact of a misprediction is high. We will either end up wasting a lot of laser power,
or lose performance because we do not have enough tokens. For a small epoch size,
the prediction accuracy suffers because we do not have sufficient information to make
an accurate prediction. Also, we lose a larger proportion of cycles in reconfiguring the
network. From the figure, we can conclude that an epoch size of 100 is the best option
(11% better than the nearest competitor, epoch size of 50), and thus we choose it.

5.11. Thermal Simulation
Microrings are extremely sensitive to temperature fluctuations. The drift in the reso-
nant wavelength is 0.09nm/◦C. A 20◦C change can shift the resonant frequency by 1.8
nm. If we assume 64 equispaced wavelengths between 1450 nm and 1650 nm, then the
separation between two wavelengths is 3.125 nm. Thus, large temperature changes
can make us read the wrong wavelength, also the power coupled into the photode-
tector decreases significantly even with small changes in temperature. The standard
approach to solve these problems is to bring all the ring resonators to a given maxi-
mum temperature, τ . All the ring resonators can be designed to operate at τ .

To realize this aim, it is necessary to have micro-heaters that heat each ring res-
onator such that its temperature reaches τ ◦C. Micro-heaters are resistive elements
and when current is passed through them they generate heat, which can be used to
tune the microring resonators [Padmaraju and Bergman 2014]. We use the scheme
proposed by Hasitha et al. [Jayatilleka et al. 2015]. It describes the placement and
operation of micro-heaters for tuning micro-ring resonators. If the temperature of a
ring resonator is T ◦C, we need to increase its temperature by τ − T ◦C. To do this,
we first got detailed power traces for all our simulations from the Tejas simulator.
We simulated all the standard components of power consumption such as core power,
cache power, and NoC power. We also simulated the optical power: input laser power,
trimming power, and power consumption in the transmitter/receiver circuits. Subse-
quently, we used these power values to compute the steady state temperature using
a thermal simulator, HotSpot. The temperature leakage convergence loop was taken
into account. We set the maximum temperature(τ) at 85◦C, and computed the trim-
ming power (1 µW/◦C [Pan et al. 2010; Nitta et al. 2011]). Note that there is a feedback
loop here because the trimming power determines the total power, which determines
the chip temperature and leakage power. We iterate till we get the converged steady
state values.

The mean trimming power is roughly 5.8W for our benchmarks, and the mean opti-
cal power varies from 30-45W. The total trimming power is thus not prohibitive.

6. CONCLUSION
In this paper, we proposed a novel optical network, BigBus, for the 1000-core era. We
opted for a novel hybrid design that uses both laser modulation and power sharing
across stations. The former approach is very effective in reducing static optical power,
and the latter approach is effective in making the best utilization of the power that is
available. To take both of these design decisions into account we proposed to use tokens
for distributing both power and access to data waveguides. By using the currency of
tokens, we could also simplify our design, and propose a predictor that predicted the
number of tokens that we need to generate per epoch.

It is true that using tokens has a flip side, which is that it increases the latency
of each transmission because a station needs to first arbitrate for a token. However,
we compensated for this shortcoming by allowing a station to grab multiple tokens at
once and thus were able to increase performance by 26% (BigBus PS vs BigBus NS)
over a baseline design that does not have this facility. We also showed that our best
design, BigBus PS, outperforms state of the art proposals such as mProbe, mATAC,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:23

and ColdBus by 34%, 14%, and 20% respectively. Finally, we demonstrated that this
design decision (in BigBus PS) makes sense in a system with 1000 cores because any
other scheme that just uses prediction such as mProbe has a much higher ED2 (61%).

REFERENCES
José L. Abellán, Chao Chen, and Ajay Joshi. 2016. Electro-Photonic NoC Designs for Kilocore Systems. J.

Emerg. Technol. Comput. Syst. 13, 2 (Nov. 2016), 24:1–24:25. DOI:https://doi.org/10.1145/2967614
James Balfour and William J. Dally. 2014. Design Tradeoffs for Tiled CMP On-chip Networks. In ACM

International Conference on Supercomputing 25th Anniversary Volume. ACM.
J. Bashir and S. R. Sarangi. 2017. NUPLet: A Photonic Based Multi-Chip NUCA Architecture. In 2017 IEEE

International Conference on Computer Design (ICCD).
Christopher Batten, Ajay Joshi, Jason Orcutt, Anatoly Khilo, Benjamin Moss, Charles Holzwarth, Milos

Popovic, Hanqing Li, Henry I Smith, Judy Hoyt, et al. 2008. Building manycore processor-to-dram net-
works with monolithic silicon photonics. In High Performance Interconnects (HOTI). IEEE, 21–30.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC benchmark suite: characterization and
architectural implications. In PACT.

Z. Cao, R. Proietti, and S. J. B. Yoo. 2014. Scalable and high performance HPC architecture with optical
interconnects. In 2014 IEEE Photonics Conference.

Chao Chen and Akanksha Joshi. 2013. Runtime management of laser power in silicon-photonic multibus noc
architecture. Selected Topics in Quantum Electronics, IEEE Journal of 19, 2 (2013), 3700713–3700713.

Sai Vineel Reddy Chittamuru, Srinivas Desai, and Sudeep Pasricha. 2017. SWIFTNoC: A Reconfigurable
Silicon-Photonic Network with Multicast-Enabled Channel Sharing for Multicore Architectures. J.
Emerg. Technol. Comput. Syst. (June 2017).

UC Davis. 2016. Worlds First 1,000-Processor Chip. (2016). https://www.ucdavis.edu/news/worlds-first-1000-
processor-chip/.

Yigit Demir and Nikos Hardavellas. 2014. EcoLaser: an adaptive laser control for energy-efficient on-chip
photonic interconnects. In ISLPED.

EPSRC. 2013. PRiME: Power-efficient, Reliable, Many-core Embedded systems. (2013). http://www.prime-
project.org/.

M. FAUGERON, M. Chtioui, A Enard, O. Parillaud, F. Lelarge, M. Achouche, J. Jacquet, A Marceaux, and F.
van Dijk. 2013. High Optical Power, High Gain and High Dynamic Range Directly Modulated Optical
Link. Lightwave Technology, Journal of 31, 8 (April 2013), 1227–1233.

H. Gu and J. Xu. 2009. Design of 3D Optical Network on Chip. In 2009 Symposium on Photonics and Opto-
electronics.

Anna Y Herr, Quentin P Herr, Oliver T Oberg, Ofer Naaman, John X Przybysz, Pavel Borodulin, and
Steven B Shauck. 2013. An 8-bit carry look-ahead adder with 150 ps latency and sub-microwatt power
dissipation at 10 GHz. Journal of Applied Physics 113, 3 (2013), 033911.

Wei Huang, K. Rajamani, M.R. Stan, and K. Skadron. 2011. Scaling with Design Constraints: Predicting
the Future of Big Chips. Micro, IEEE 31, 4 (2011), 16 –29.

M. J. Humphrey. 1994. Calculation of coupling between tapered fiber modes and whispering-gallery modes of
a spherical microlaser. Ph.D. Dissertation. University of Maryland, College Park, Maryland.

ARM Inc. 2007. ARM Unveils Cortex-A9 Processors For Scalable Performance and Low-Power Designs.
(2007). https://www.arm.com/about/newsroom/18688.php.

Hasitha Jayatilleka, Kyle Murray, Miguel Ángel Guillén-Torres, Michael Caverley, Ricky Hu, Nicolas AF
Jaeger, Lukas Chrostowski, and Sudip Shekhar. 2015. Wavelength tuning and stabilization of microring-
based filters using silicon in-resonator photoconductive heaters. Optics Express 23, 19 (2015), 25084–
25097.

Ajay Joshi, Christopher Batten, Yong-Jin Kwon, Scott Beamer, Imran Shamim, Krste Asanovic, and
Vladimir Stojanovic. 2009. Silicon-photonic clos networks for global on-chip communication. In NoCS.

Andrew B Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. 2011. Orion 2.0: A power-area simulator for
interconnection networks. Institute of Electrical and Electronics Engineers.

Nevin Kirman and José F. Martı́nez. 2010. A power-efficient All-optical On-chip Interconnect Using
Wavelength-based Oblivious Routing. In ASPLOS.

S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja, and A. Hemani. 2002.
A network on chip architecture and design methodology. In VLSI. 105–112.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:24 Bashir et al.

George Kurian, Jason E Miller, James Psota, Jonathan Eastep, Jifeng Liu, Jurgen Michel, Lionel C Kimer-
ling, and Anant Agarwal. 2010. ATAC: a 1000-core cache-coherent processor with on-chip optical net-
work. In PACT.

Jacob S Levy, Yoshitomo Okawachi, Michal Lipson, Alexander L Gaeta, and Kasturi Saha. 2011. High-
performance silicon-based multiple wavelength source. In CLEO: Science and Innovations. Optical So-
ciety of America, CMAA7.

Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and Norman P Jouppi. 2009.
McPAT: an integrated power, area, and timing modeling framework for multicore and manycore archi-
tectures. In MICRO.

Moustafa Mohamed, Zheng Li, Xi Chen, and Alan Mickelson. 2014. HERMES: A Hierarchical Broadcast-
Based Silicon Photonic Interconnect for Scalable Many-Core Systems. arXiv preprint arXiv:1401.4629
(2014).

Randy Morris, Evan Jolley, and Avinash Karanth Kodi. 2014. Extending the performance and energy-
efficiency of shared memory multicores with nanophotonic technology. Parallel and Distributed Systems,
IEEE Transactions on 25, 1 (2014), 83–92.

C. Nitta, M. Farrens, and V. Akella. 2011. Addressing system-level trimming issues in on-chip nanophotonic
networks. In HPCA. 122–131.

Ian O’Connor. 2004. Optical solutions for system-level interconnect. In Proceedings of the 2004 international
workshop on System level interconnect prediction. ACM, 79–88.

Kishore Padmaraju and Keren Bergman. 2014. Resolving the thermal challenges for silicon microring res-
onator devices. Nanophotonics 3, 4-5 (2014), 269–281.

Yan Pan, John Kim, and Gokhan Memik. 2010. Flexishare: Channel sharing for an energy-efficient nanopho-
tonic crossbar. In HPCA.

Yan Pan, Prabhat Kumar, John Kim, Gokhan Memik, Yu Zhang, and Alok Choudhary. 2009. Firefly: illu-
minating future network-on-chip with nanophotonics. In ACM SIGARCH Computer Architecture News.
ACM.

Sudeep Pasricha and Shirish Bahirat. 2011. OPAL: A multi-layer hybrid photonic NoC for 3D ICs. In Design
Automation Conference (ASP-DAC), 2011 16th Asia and South Pacific. IEEE, 345–350.

Eldhose Peter, Anuj Arora, Janibul Bashir, Akriti Bagaria, and Smruti R. Sarangi. 2017. Optical Overlay
NUCA: A High-Speed Substrate for Shared L2 Caches. J. Emerg. Technol. Comput. Syst. (May 2017).

Eldhose Peter and Smruti R Sarangi. 2014. OptiKit: An Open Source Kit for Simulation of On-Chip Optical
Components. (2014).

Eldhose Peter and Smruti R Sarangi. 2015. Optimal Power Efficient Photonic SWMR Buses. In Silicon
Photonics (with HiPEAC).

Eldhose Peter, Arun Thomas, Anuj Dhawan, and Smruti R Sarangi. 2015. ColdBus: A Near-Optimal Power
Efficient Optical Bus. In HiPC.

Eldhose Peter, Arun Thomas, Anuj Dhawan, and Smruti R Sarangi. 2016. Active microring based tunable
optical power splitters. Optics Communications (2016).

R. Proietti, Zheng Cao, Yuliang Li, and S. J. B. Yoo. 2014. Scalable and distributed optical interconnect
architecture based on AWGR for HPC and data centers. In OFC 2014.

John Rath. 2013. Fujitsu Lights up PCI Express with Intel Silicon Photonics. (2013). http://www.
datacenterknowledge.com/archives/2013/11/07/fujitsu-lights-pci-express-intel-silicon-photonics.

Graham T. Reed. 2008. Silicon Photonics: The State of the Art. John Wiley & Sons.
S. R. Sarangi, Kalayappan Rajshekar, Kallurkar Prathmesh, Goel Seep, and Peter Eldhose. 2015. Tejas: A

Java based Versatile Micro-architectural Simulator,. In PATMOS.
Md Ashif I Sikder, Avinash K Kodi, Matthew Kennedy, Savas Kaya, and Ahmed Louri. 2015. OWN: Optical

and Wireless Network-on-Chip for Kilo-core Architectures. In High-Performance Interconnects (HOTI).
44–51.

Mircea R. Stan, Kevin Skadron, Wei Huang, and Karthick Rajamani. 2011. Scaling with Design Constraints:
Predicting the Future of Big Chips. IEEE Micro 31 (2011).

I. G. Thakkar, S. V. R. Chittamuru, and S. Pasricha. 2016. Run-time laser power management in photonic
NoCs with on-chip semiconductor optical amplifiers. In 2016 Tenth IEEE/ACM International Sympo-
sium on Networks-on-Chip (NOCS).

S Thoziyoor, N Muralimanohar, JH Ahn, and NP Jouppi. 2008. Cacti 5.3. HP Laboratories, Palo Alto, CA
(2008).

A. W. Topol, D. C. L. Tulipe, L. Shi, D. J. Frank, K. Bernstein, S. E. Steen, A. Kumar, G. U. Singco, A. M.
Young, K. W. Guarini, and M. Ieong. 2006. Three-dimensional integrated circuits. IBM Journal of Re-
search and Development (July 2006).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:25

Dana Vantrease, Nathan Binkert, Robert Schreiber, and Mikko H Lipasti. 2009. Light speed arbitration and
flow control for nanophotonic interconnects. In Microarchitecture, 2009. MICRO-42. IEEE.

Dana Vantrease, Robert Schreiber, Matteo Monchiero, Moray McLaren, Norman P. Jouppi, Marco
Fiorentino, Al Davis, Nathan Binkert, Raymond G. Beausoleil, and Jung Ho Ahn. 2008. Corona: System
Implications of Emerging Nanophotonic Technology. In ISCA.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. 1995. The
SPLASH-2 programs: characterization and methodological considerations. SIGARCH Comput. Archit.
News 23 (May 1995), 24–36.

Xiaowen Wu, Jiang Xu, Yaoyao Ye, Zhehui Wang, Mahdi Nikdast, and Xuan Wang. 2014. SUOR: Sectioned
Undirectional Optical Ring for Chip Multiprocessor. J. Emerg. Technol. Comput. Syst. 10, 4, Article 29
(June 2014), 25 pages.

Yi Xu, Jun Yang, and Rami Melhem. 2012. Channel borrowing: an energy-efficient nanophotonic crossbar
architecture with light-weight arbitration. In ICS.

Y. Ye, L. Duan, J. Xu, J. Ouyang, M. K. Hung, and Y. Xie. 2009. 3D optical networks-on-chip (NoC) for multi-
processor systems-on-chip (MPSoC). In 2009 IEEE International Conference on 3D System Integration.

Y. Ye, J. Xu, B. Huang, X. Wu, W. Zhang, X. Wang, M. Nikdast, Z. Wang, W. Liu, and Z. Wang. 2013. 3-D Mesh-
Based Optical Network-on-Chip for Multiprocessor System-on-Chip. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (April 2013).

Y. Yin, R. Proietti, C. J. Nitta, V. Akella, C. Mineo, S. J. B. Yoo, and K. Wen. 2013. AWGR-based all-to-all
optical interconnects using limited number of wavelengths. In 2013 Optical Interconnects Conference.

R. Zhang, M. R. Stan, and K. Skadron. 2015. Hotspot 6.0: Validation, acceleration and extension. (2015).
Li Zhou and Avinash Karanth Kodi. 2013. Probe: Prediction-based optical bandwidth scaling for energy-

efficient nocs. In NOCS.
Arslan Zulfiqar, Pranay Koka, Herb Schwetman, Mikko Lipasti, Xuezhe Zheng, and Ashok Krishnamoor-

thy. 2013. Wavelength stealing: an opportunistic approach to channel sharing in multi-chip photonic
interconnects. In MICRO.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:26 Bashir et al.

APPENDIX

A. SYSTEM FEASIBILITY AND THERMAL SIMULATION SETUP
Feasibility of the System : Let us illustrate a reference design with the ARM Cortex A9
processor [Inc 2007], whose area is 1.5mm2 at 65nm technology. Note that ARM Cortex
A9 has 2-issue OOO cores and we use dual issue inorder cores. Hence, our cores are
expected to be smaller. We only provide an upper bound in this section. Now, using
the scaling factors provided by Stan et al. [Stan et al. 2011], we compute the size of
the core to be 0.19mm2 at 10nm technology. With such a small core, it is possible to
have 768 cores occupying 146mm2. We can also integrate 256 cache banks of capacity
32MB on an area less than 158mm2 (calculated using Cacti 6.0 and scaled using [Stan
et al. 2011]). Thus, our 1024 nodes (768 cores + 256 caches) require 304mm2 at 10nm
technology. If we budget an additional 25% (results from Intel’s SCC processor) of area
for interconnects, and memory controllers, our total chip area comes to 405mm2, which
is the size of a standard die for high end processors. Even if we consider power, the
design is feasible (please see the simulations in Section 5.7). Note that our approach
is not specific to the reference design. It can be used for any large system of
cores and caches.

A.0.1. Thermal Simulation. BigBus has an optical layer and a logical layer connected
together using through-silicon vias. The chip temperature depends on the power con-
sumed by cores, cache banks, and other logic layer components. Moreover, the power
consumption and the power losses associated with the optical layer is also responsible
for the on-chip temperature variation. All the power related values are provided by
the Tejas simulator, which includes the Orion and McPAT tools to provide the power
numbers associated with the logic layer. The analytical model proposed by Joshi et
al. [Joshi et al. 2009] and the laser activity statistics provided by Tejas are used to cal-
culate the power associated with the optical layer. The power profile thus obtained is
provided as input to the thermal simulator, along with the floorplan of the chip. Since
our chip has a 3D structure, we use the 3D extension of HotSpot [Zhang et al. 2015]
to simulate temperature. In our simulations, we set the ambient temperature as 35◦C,
and use the default package parameters of HotSpot. For the optical components, we
aggregate all the optical components on a single layer and the laser sources are mod-
elled separately by incorporating a layer of lasers. The 3D cross-sectional view along
with the dimensions of each component used in our system are shown in Figure 4. In
our thermal simulations, the chip reaches to a peak temperature of 82◦C.

B. SCALABILITY ANALYSIS
Our paper proposes a scalable optical interconnect for a 1000-node system. Here scal-
able refers to the fact that the proposed network will work efficiently for such a large
system without incurring a large loss in performance, and without consuming a lot of
power. This is because of the fact that for such systems, the current optical NoCs [Chit-
tamuru et al. 2017; Pan et al. 2010] will fail to scale. The reason being the large size
and number of waveguides when scaled to a 1000-node system. These long waveguides
will have a large number of cascaded splitters which will increase the power consump-
tion exponentially [Peter and Sarangi 2015]. Moreover, we are still years away from a
1000-node system, thus our results will continue to hold for at least next decade. Even
beyond, we can add more P-clusters without increasing the length of the waveguides.

For completeness, we compare our design with a state-of-art photonic NoC proposed
by Chittamuru et al. [Chittamuru et al. 2017], called SwiftNoC. The authors proposed
an NoC for a 256 core system. The chip has a tiled architecture. Each tile is composed
of 4 cores and an optical station (router). The system is divided into four clusters,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:27

with each cluster contains 16 tiles (64 cores). The clusters are provided with MWMR
waveguides in order to communicate with each other. The authors propose to use a
bandwidth exchange mechanism to share the available bandwidth. In addition, they
propose to monitor the traffic injected into the network and then accordingly distribute
the bandwidth among the clusters. For more details please see [Chittamuru et al.
2017].

To compare SwiftNoC with our design, we develop two different variants of this NoC
: SwiftNoC 768 and mSwiftNoC. In SwiftNoC 768, we extended the SwiftNoC to 768
cores. In the final chip, there are 12 clusters, with each cluster containing 16 tiles (64
cores). We use 16 MWMR waveguide groups for each cluster. In mSwiftNoC, we use the
bandwidth transfer and traffic monitoring mechanism of SwiftNoC in each P-cluster of
the BigBus design. In addition, we do not use any kind of laser modulation in both the
schemes.

Figure 13 shows the relative performance comparison across different configura-
tions. It is clear that BigBus PS performs better than all the other schemes. The im-
provement is attributed to its ability to send multiple messages at the same time.
Moreover, the implementation of the NUCA scheme further enhances the performance
making it the best configuration in terms of performance. The lower performance of
SwiftNoc 768 as compared to mSwiftNoC is because of the fact that in the former con-
figuration the messages have to travel large distances, which increases the effective
latency.

 barnes

 bodytra
ck

 canneal

 dedup ff
t

 fm
m

 Lu-contig
uous

 O
cean-conti

 ra
ytra

ce

 st
reamcluste

r

 sw
aptio

ns
 M

ean

0

1

2

R
el

at
iv

e
p

er
fo

rm
an

ce

 c
o

m
p

ar
is

o
n

BigBus_NS SwiftNoC_768 mSwiftNoC BigBus_PS

Fig. 13: Performance comparison

Figures 14 and 15 compare the relative laser power consumption and ED2 val-
ues across different configurations. Among these, SwiftNoC 768 consumes the highest
power. The main reason is that in this configuration the messages have to travel large
distances, resulting in higher optical losses. In addition, the history based bandwidth
relocation mechanism is not as effective as the laser modulation technique used in dif-
ferent variants of BigBus (see Section 5.8.1), which further results in higher optical
power consumption. In terms of laser power consumption, BigBus NS consumes the
least power which is 48% lower than its nearest competitor (mSwiftNoC). In terms of

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:28 Bashir et al.

ED2 values, BigBus PS results in 4%, 23% and 52% reduction as compared to mSwift-
NoC, SwiftNoC 768 and BigBus NS respectively.

 barnes

 bodytra
ck

 canneal

 dedup ff
t

 fm
m

 Lu-contig
uous

 O
cean-conti

 ra
ytra

ce

 st
reamcluste

r

 sw
aptio

ns
 M

ean

0

1

2

3

4

5

6

R
el

at
iv

e
la

se
r

 p
o

w
er

 c
o

n
su

m
p

ti
o

n

BigBus_NS SwiftNoC_768 mSwiftNoC BigBus_PS

Fig. 14: Laser power consumption

 barnes

 bodytra
ck

 canneal

 dedup ff
t

 fm
m

 Lu-contig
uous

 O
cean-conti

 ra
ytra

ce

 st
reamcluste

r

 sw
aptio

ns
 M

ean

0

1

E
D

^
2

 c

o
m

p
ar

is
o

n

BigBus_NS SwiftNoC_768 mSwiftNoC BigBus_PS

Fig. 15: ED2 comparison

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

BigBus: A Scalable Optical Interconnect 39:29

C. ARCHITECTURES PROPOSED AT UC DAVIS
The researchers at UC Davis have proposed several NoC architectures that provide all-
to-all optical interconnections. Most of these research works are scalable and are based
on hierarchical designs [Cao et al. 2014; Proietti et al. 2014; Yin et al. 2013]. Much of
this can be attributed to the usage of AWGR based routers [Yin et al. 2013] in their
design. Scalability is one common objective that both these NoCs and our proposal
are trying to achieve. However, our proposal is not limited to just providing a scalable
architecture. We also propose a novel prediction scheme, wavelength sharing scheme
and a NUCA scheme to not only make the network scalable but at the same time
increase the performance of the system and decrease the laser power consumption.
Ours is the first architecture, which has deviated from the traditional approach of
having cores and cache banks close to each other. It uses a separate cluster containing
only the cache banks and leveraging the low latency benefits of optical communication
and NUCA scheme to increase the hit rate and decrease the effective access time,
resulting in increased performance.

To complete our discussion, we compared the BigBus PS design with one of the scal-
able optical architectures proposed by Cao et al. [Cao et al. 2014] at UC Davis. The
system is a hierarchical design with four different hierarchies: core, node, cabinet, and
full system. The full system has m × n cabinets, with each cabinet containing r nodes
and each node has c cores. We use their design to develop a system for 768 cores. We
choose m = n = 2, r = 6, and c = 32. We call this architecture as UCDavisNoC.

In Figure 16, we compare the performance of BigBus PS against the UCDavisNoC.
It is clear from the figure that our scheme performs 55% better. The main reason for
performance improvement is the novel NUCA scheme, which increases the hit rate in
the LLC and hence decreases the execution time. Similarly, in Figure 17, we compare
the laser power consumed by two different configurations. Due to an effective laser
modulation technique, BigBus PS results in 44% reduction in power as compared to
UCDavisNoC.

It is clear from the results that even if both the configurations are able to scale to
1000s of nodes but still some extra novel design decisions in our design make it better
than the scalable design proposed by the researchers at UC Davis.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:30 Bashir et al.

 barnes

 bodytra
ck

 canneal

 dedup ff
t

 fm
m

 Lu-contig
uous

 O
cean-conti

 ra
ytra

ce

 st
reamcluste

r

 sw
aptio

ns
 M

ean

0

1

2

R
el

at
iv

e
p

er
fo

rm
an

ce

 c
o

m
p

ar
is

o
n

UCDavisNoC BigBus_PS

Fig. 16: Performance comparison

 barnes

 bodytra
ck

 canneal

 dedup ff
t

 fm
m

 Lu-contig
uous

 O
cean-conti

 ra
ytra

ce

 st
reamcluste

r

 sw
aptio

ns
 M

ean

0

1

R
el

at
iv

e
la

se
r

 p
o

w
er

 c
o

n
su

m
p

ti
o

n

UCDavisNoC BigBus_PS

Fig. 17: Relative laser power consumption

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

